

Time: 2 hours 45 min.1

Parts - A and B

(Max. Marks: 40

Similar Triangles, Tangents and Secants to a Circle, Mensuration, Trigonometry, Applications of Trigonometry, Probability, Statistics

Instructions:

- In the time duration of 2 hours 45 minutes, 15 minutes of time is allotted to read and understand the Question paper.
- Answer the Questions under 'Part A' on a separate answer book.
- Write the answers to the Questions under 'Part B' on the Question paper itself and attach it to the answer book of 'Part - A'.

Time : 2 Hours

PART - A

[Marks: 35

Note:

- L. Answer all the questions from the given three sections -I. II and III of Part A.
- In section III, every question has internal choice. Answer anyone alternative.

SECTION - I

 $(Marks: 7 \times I = 7)$

Note : (i) Answer all the questions.

- (ii) Each question carries 1 mark.
- 1. If a cone is inscribed in a cylinder, what is the ratio of their volumes?
- The vertex angle of a cone is 60°. Find the ratio of diameter with the height of the cone.
- Is it correct to say that sin 0 = cos (90 0)? Why?
- 4. Draw the diagram corresponding to Basic Proportionality Theorem.
- 5. "Cuboid is one of right prism". Is it true ? Justify.
- A dice is thrown once. Find the probability of getting a composite number.
- 7. Write the first 10 prime numbers and find their median.

SECTION - II

 $(Marks : 6 \times 2 = 12)$

Note : (i) Answer all the questions,

- (ii) Each question carries 2 marks.
- 8. If A, B, C are interior angles of AABC, then show that

$$\sin\left(\frac{A+B}{2}\right) + \cos\left(\frac{A+B}{2}\right) = \cos\frac{C}{2} + \sin\frac{C}{2}$$

9. From the following data, find the probability of selecting 'B' blood group student.

Blood group	A	В	AB	0
Number of students	10	13	12	5

10. A straight highway leads to foot of the tower. A man standing at the top of the tower observes a car at an angle of depression of θ, which is approaching the foot of the tower with a uniform speed. Six seconds later the angle of depression is φ. Draw a diagram for this data and analyze.

11. Prove that
$$\sqrt{\frac{\cos \sec A + 1}{\cos \sec A - 1}} - \sqrt{\frac{\cos \sec A - 1}{\cos \sec A + 1}} = 2 \cot A$$
.

12. The height of 12 members of a family are given below in the table.

Height (in ft)	5	5.2	5.4	5,6
No.of family members	3	4	3	2

Find the mean height of the family members.

13. What can you say about the values of sin A and cos A as the measure of an angle A increases from 0° to 90°?

SECTION - III

 $(Marks : 4 \times 4 = 16)$

Note (fi) Answer all the questions.

- (ii) Each question carries four marks.
- (iii) There is internal choice for each question, only one option from each question is to be attempted.
- 14. Ten identical mementos is made by a school to awarding 10 students for first prize winners in games. If each memento is made as shown in figure (shaded portion) its base PQRS is silver plated from the front side at the rate of ₹ 20 per square cm. Find the total cost of the silver plating of 10 mementos. (OR = 5 cm, RQ = 6 cm, PS = 8 cm)

If
$$\frac{\cos \alpha}{\cos \beta} = m$$
, $\frac{\cos \alpha}{\sin \beta} = n$, then show that $(m^2 + n^2)\cos^2 \alpha = m^2 n^2$.

 Draw a two concentric circles of radii 1.5 cm and 4 cm. From a point 10 cm away from its centre. Construct the pairs of tangent to the circles.

OR

Daily income of 40 coal-mine labours are given in the following table :

Daily income in Rupees	100 - 150	150 - 200	200 - 250	250 - 300	300 - 350	350 - 400
No.of labours	4	3	3	. 8	13	9

Draw Ogive curves (Cumulative frequency) for this data.

16. The angle of elevation of the top of a tower from two points at a distance of 4m and 9 m from the base of the tower and in the same straight line with it, are complementary. Prove that the height of the tower is 6 m.

OR

Find the missing frequencies f, and f,, if mean of 50 observations given below is 36.4.

Class	0-10	10-20	20-30	30-40	40 - 50	50-60	60-70
Frequency	3	5	fi	10	6	8	5

If cosec θ + cot θ = k, then write all trigonometric ratios at θ in terms of k.

OR

ABCD is a trapezium, in which AB || DC and its diagonals intersect each other at point 'O'. Show that $\frac{OA}{OB} = \frac{OC}{OD}$.

Time: 30 Mts.] PART - B [Marks: 5

Instructions:

- (i) Answer all questions.
- (ii) Each question carries 1/2 mark
- (iii) Answers are to be written in question paper only.
- (iv) Marks will not be awarded in any case of over writing, rewriting or erased answers.
- Write the CAPITAL LETTERS showing the correct answer for the following questions in the brackets provided against each question. (Marks 10 × ½ = 5)
- - (A) 300 cm³
- (B) 300 cm²
- (C) 150 cm²
- (D) 150 cm³
- 2. If $\Delta PQR \Delta XYZ$, QR = 3 cm, YZ = 4 cm, ΔPQR area = 54 cm².

Then AXYZ area =

.

(A) 13.5 cm² (B) 46 cm²

(C) 96 cm²

(D) 12 cm2

						_
3.	Which one of the	following is NOT	a measure of central tende	ency?	1	1
	(A) Mean	(B) Median	(C) Range -	(D) Mode		
4.		The state of the s	pendicular AD is drawn on	BC. Which on	e of	the
	following is NOT	correct?			1	
	(A) ΔABC - ΔDAC		(B) ΔDAC - ΔDBA			
	(C) AABC - ADBA		(D) ΔABC - ΔDBA -	ADAC		
5.	At what value of	$x', \frac{5}{x}$ may possib	de probability of an event		1	1
	(A) 2	(B) 1	(C) 4	(D) 6		
6.	Which one of the	following is NOT	defined?		T	1
	(A) sin 90°	(B) cos 0°	(C) sec 90°	(D) cos 90°		
7.	$\sqrt{\frac{1-\cos^2 A}{1+\cot^2 A}} = \dots$				1	1
	(A) sin A	(B) √sin A	(C) sin ² A	(D) sin ⁴ A		
8.	From the below f	igure ∠APB = 40°	, then ∠AOB =		1	1
		O B) 400 P			
	(A) 110°	(B) 140°	(C) 80°	(D) 160°		
9.	In the below figur	re, AB = 3 cm, AC	= 8 cm, BE = 4.5 cm, then	CD =	1	1
			E D			
		A	ВС			
13	(A) 10.5 cm	(B) 9.5 cm	(C) 16 cm	(D) 12 cm		
0.			top of a tower 12 m heig point from the top is		on [the
	(A) 10 m	(B) 12√3 m	(C) 7.5 m	(D) 6 m		

SOLUTIONS

PART - A

SECTION - I

- If a cone is inscribed in a cylinder, what is the ratio of their volumes?
- Sol. Volume of the cone: .Volume of the cylinder

$$= \frac{1}{3}\pi r^2 h : \pi r^2 h$$
$$= \frac{1}{3} \div 1$$
$$= 1 \div 3$$

The vertex angle of a cone is 60°. Find the ratio of diameter with the height of the cone.

Sol.
$$\tan 30^\circ = \frac{r}{h}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{d/2}{h} \left(-r - \frac{d}{2} \right)$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{d}{2h}$$

$$\Rightarrow \frac{2}{\sqrt{3}} = \frac{d}{h}$$

i.e., Ratio of diameter with height $= 2 : \sqrt{3}$

- 3. Is it correct to say that $\sin \theta = \cos (90 - \theta)$? Why?
- Sol. Yes.

$$\label{eq:sintheta} \begin{split} \sin\theta &= \frac{AB}{AC} \left(\sin\theta - \frac{Opposite \ side}{Hypotenuse} \right) \\ \cos\left(90 - \theta \right) \\ & = \frac{AB}{AC} \left(\cos\theta = \frac{Adjacent \ side}{Hypotenuse} \right) \end{split}$$

 $\sin \theta = \cos (90 - \theta)$

 Draw the diagram corresponding to Basic Proportionality Theorem.

Sol.

- "Cuboid is one of right prism". Is it true? Justify.
- Sol. Yes. Because

In a prism if lateral surfaces are at right angles to the bases along the edges then it is called a Right Prism.

In a cuboid the lateral surfaces are at right angles to the base along the edges.

Hence cuboid is a right prism.

- A dice is thrown once. Find the probability of getting a composite number.
- Sol. Possible outcomes = 1, 2, 3, 4, 5, 6

 Favourable outcomes = 4, 6

 Probability of a getting a compositive number

$$=\frac{2}{6}$$

- Write the first 10 prime numbers and find their median.
- Sol. The first 10 prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

Median of the above data =
$$\frac{11+13}{2}$$

= $\frac{24}{2}$ = 12

SECTION - II

 If A. B, C are interior angles of ΔABC, then show that

$$\sin\left(\frac{A+B}{2}\right) + \cos\left(\frac{A+B}{2}\right)$$

$$= \cos\frac{C}{2} + \sin\frac{C}{2}.$$

$$\left(\frac{A+B}{2}\right) = 90^{\circ} - \frac{C}{2}$$

$$\sin\left(\frac{A+B}{2}\right) = \sin\left(90^{\circ} - \frac{C}{2}\right)$$

$$\cos\left(\frac{A+B}{2}\right) = \cos\left(90^{\circ} - \frac{C}{2}\right)$$

$$= \sin\frac{c}{2} \qquad (2)$$

$$= \sin\left(\frac{A+B}{2}\right) + \cos\left(\frac{A+B}{2}\right)$$
$$= \cos\frac{c}{2} + \sin\frac{c}{2}$$

 From the following data, find the probability fo selecting 'B' blood group student.

Blood group	A	В	AB	0
Number of students	10	13	12	5

Sol. Number of favourable outcomes = 13

Number of total possible outcomes

.. Propability of selecting B blood

group =
$$\frac{\text{No.of Favourable outcomes}}{\text{No. of Total outcomes}}$$

$$= \frac{13}{40}$$

10. A straight highway leads to foot of the tower. A man standing at the top of the tower observes a car at an angle of depression of 0, which is approaching the foot of the tower with a uniform speed. Six seconds later the angle of depression is \(\phi\). Draw a diagram for this data and analyze.

Sol.

If
$$\frac{\cos \alpha}{\cos \beta} = m$$
, $\frac{\cos \alpha}{\sin \beta} = n$, then show that $(m^2 + n^2)\cos^2 \alpha = m^2 n^2$.

Sol.
$$m = \frac{\cos \alpha}{\cos \beta} \qquad n = \frac{\cos \alpha}{\sin \beta}$$

$$\frac{1}{m} = \frac{\cos \beta}{\cos \alpha} \qquad \frac{1}{n} = \frac{\sin \beta}{\cos \alpha}$$

$$\frac{1}{m^2} = \frac{\cos^2 \beta}{\cos^2 \alpha} \qquad \frac{1}{n^2} = \frac{\sin^2 \beta}{\cos^2 \alpha}$$

$$\frac{1}{m^2} + \frac{1}{n^2} = \frac{\cos^2 \beta}{\cos^2 \alpha} + \frac{\sin^2 \beta}{\cos^2 \alpha}$$

$$\frac{1}{m^2 + n^2} = \frac{\cos^2 \beta}{\cos^2 \alpha} + \frac{\sin^2 \beta}{\cos^2 \alpha}$$

$$\frac{m^2 + n^2}{m^2 n^2} = \frac{\sin^2 \beta + \cos^2 \beta}{\cos^2 \alpha}$$

$$\frac{(m^2 + n^2) \cos^2 \alpha}{(m^2 + n^2) \cos^2 \alpha} = \frac{m^2 n^2}{n^2}$$

15. Draw a two concentric circles of radii 1.5 cm and 4 cm. From a point 10 cm away from its centre. Construct the pairs of tangent to the circles.

Steps of constructions:

- Draw concentric circles with centre "O" and radii 1.5 cm and 4 cm.
- Mark an external point P such that OP = 10 cm
- Draw the perpendicular bisector of OP which meets it at M.
- Draw a circle with centre M having radius OM, to intersects the concentric circle at A, B, C and D respectively.
- Join P. A. P. B. P. C. and P. D.
 PA, PB, PC, PD are required tangents.

OR

Daily income of 40 coal-mine labours are given in the following table:

Daily income in Rupees	100 - 150	150 - 200	200 - 250	250 - 300	300 - 350	350 - 400
No.of labours	4	3	-3	8	13	9

Draw Ogive curves (Cumulative frequency) for this data.

Sol.

000	Daily income in Rs	No. of labours	U.B	Less than cumulative frequency	(x, y)	L.B.	More than cumulative frequency	(x, y)
	100 - 150	- 4	150	4	(150, 4)	100	40	(100, 40)
ì	150 - 200	.3	200	7	(200, 7)	150	36	(150, 36)
	200 - 250	3	250	10	(250,10)	200	33	(200, 33)
i	250 - 300	8.	300	18	(300, 18)	250	30	(250, 30)
	300 - 350	13	350	31	(350, 31)	300	22	(300, 22)
	350 - 400	9	400	40	(400, 40)	350	9	(350, 9)

16. The angle of elevation of the top of a tower from two points at a distance of 4m and 9 m from the base of the tower and in the same straight line with it, are complementary. Prove that the height of the tower is 6 m.

... Height of the tower = 6m

If
$$\frac{\cos \alpha}{\cos \beta} = m$$
, $\frac{\cos \alpha}{\sin \beta} = n$, then show that $(m^2 + n^2) \cos^2 \alpha = m^3 n^2$.

Sol.
$$m = \frac{\cos \alpha}{\cos \beta} \qquad n = \frac{\cos \alpha}{\sin \beta}$$

$$\frac{1}{m} = \frac{\cos \beta}{\cos \alpha} \qquad \frac{1}{n} = \frac{\sin \beta}{\cos \alpha}$$

$$\frac{1}{m^2} = \frac{\cos^2 \beta}{\cos^2 \alpha} \qquad \frac{1}{n^2} = \frac{\sin^2 \beta}{\cos^2 \alpha}$$

$$\frac{1}{m^2} + \frac{1}{n^2} = \frac{\cos^2 \beta}{\cos^2 \alpha} + \frac{\sin^2 \beta}{\cos^2 \alpha}$$

$$\frac{1}{m^2 + n^2} = \frac{\sin^2 \beta + \cos^2 \beta}{\cos^2 \alpha}$$

$$\frac{m^2 + n^2}{m^2 n^2} = \frac{\sin^2 \beta + \cos^2 \beta}{\cos^2 \alpha}$$

$$(m^2 + n^2) \cos^2 \alpha = m^2 n^2$$

 Draw a two concentric circles of radii
 1.5 cm and 4 cm. From a point 10 cm away from its centre. Construct the pairs of tangent to the circles.

Rough Diagram

Steps of constructions:

- Draw concentric circles with centre "O" and radii 1.5 cm and 4 cm.
- Mark an external point P such that OP = 10 cm
- Draw the perpendicular bisector of OP which meets it at M.
- Draw a circle with centre M having radius OM, to intersects the concentric circle at A, B, C and D respectively.
- Join P, A; P, B; P, C; and P, D.
 PA, PB, PC, PD are required tangents.

OR

Dally income of 40 coal-mine labours are given in the following table :

Daily income in Rupees	100-150	150 - 200	200 - 250	250 - 300	300 - 350	350 - 400
No.of labours	4	3	3	8	13	9

Draw Ogive curves (Cumulative frequency) for this data.

Sol.

	Daily income in Rs	No. of labours	U.B	Less than cumulative frequency	(x, y)	L.B.	More than cumulative frequency	(x, y)
	100 - 150	4	150	4	(150, 4)	100	40	(100, 40)
	150 - 200	3	200	7	(200, 7)	150	36	(150, 36)
	200 - 250	3	250	10	(250,10)	200	33	(200, 33)
d	250 - 300	8,	300	18	(300, 18)	250	30	(250, 30)
1	300 - 350	13	350	31	(350, 31)	300	22	(300, 22)
	350 - 400	9	400	40	(400, 40)	350	9	(350, 9)

Find the missing frequencies f, and f,, if mean of 50 observations given below is 36.4.

Class	0-10	10-20	20-30	30 - 40	40-50	50 - 60	60 - 70
Frequency	3	5	fi	10	f ₂	.8	5

Sol.

Class	Prequency	Mid values	· fx
CI	(0)	*	
0-10	3	5	15
10 - 20	5	15	75
20-30	f	25	251
30 - 40	10	35	350
40 - 50	4	45	45 f ₂
50 - 60	8	55	440
60 - 70	5	65 - 11	325

$$\Sigma I = 31 + I_1 + I_2$$

$$\Sigma fx = 1205 + 25 f_1 + 45 f_2$$

$$Mean = \frac{\Sigma f_n}{\Sigma f}$$

$$36.4 = \frac{1205 + 25f_1 + 45f_2}{31 + f_1 + f_2}$$

$$31 + f_1 + f_2 = 50$$

$$36.4 = \frac{1205 + 25f_1 + 45f_2}{50}$$

$$f_1 + f_2 = 50 - 31$$

$$1820 = 1205 + 25f_1 + 45f_2$$

$$= 19$$

$$1820 = 1205 + 25t_1 + 45t_2$$

$$1820 - 1205 = 25(f_1 + f_2) + 20 f_2$$

$$615 - 475 = 20f$$

$$140 = 20f$$

$$f_1 = 19 - 7 = 12$$

If cosec θ + cot θ = k, then write all trigonometric ratios at θ in terms of k.

Sol.
$$cosec \theta + cot \theta = k$$
 — (1)

$$\csc \theta - \cot \theta = \frac{1}{k}$$
 (2)

$$(1) + (2) \Rightarrow 2 \csc \theta = k + \frac{1}{k}$$

$$cosec \ \theta = \frac{k^2 + 1}{2k} \Rightarrow \sin \theta = \frac{2k + 1}{k^2 + 1}$$

$$\cos \theta = \sqrt{1 - \frac{4k^2}{(k^2 + 1)^2}} = \sqrt{\frac{(k^2 - 1)^2}{(k^2 + 1)^2}} = \frac{k^2 - 1}{k^2 + 1}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\left(\frac{2k}{k^2 + 1}\right)}{\left(\frac{k^2 - 1}{k^2 + 1}\right)} = \frac{2k}{k^2 - 1}$$

$$\cot \theta = \frac{k^2 - 1}{2k}$$

$$\sec \theta = \frac{1}{\cos \theta} = \frac{k^2 + 1}{k^2 - 1}$$

OR

ABCD is a trapezium, in which AB | DC and its diagonals intersect each other at point 'O'. Show that $\frac{OA}{OB} = \frac{OC}{OD}$.

In A OAB, A OCD

∠ AOB = ∠ COD (: pair of vertically Opp. Angles)

∠ OAB = ∠ OCD (: Pair of alternate angles)

∠OBA = ∠ODC (: Pair of alternate angles)

: A OAB ~ A OCD (: AAA similarity)

$$\frac{OA}{OC} = \frac{OB}{OD}$$

$$\Rightarrow \frac{OA}{OB} = \frac{OC}{OD}$$

PART - B