

Time: 2.45 Hours)

Parts - A and B

[Max. Marks: 40

Similar Triangles, Tangents and Secants to a Circle, Mensuration, Trigonometry, Applications of Trigonometry, Probability, Statistics

Instructions:

- In the time duration of 2 hours 45 minutes, 15 minutes of time is allotted to read and understand the Question paper.
- Answer the Questions under Part A on a separate answer book.
- Write the answer to the questions under Part B on the question paper itself and attach it to the answer book of Part – A.

Time: 2.15 Hours

PART - A

[Max. Marks: 35

Note:

- 1. Answer all the questions from the given three sections I, II and III of Part A.
- In section III, every question has internal choice. Answer anyone alternative.

SECTION - I

 $7 \times 1 = 7$

Note: (i) Answer all the following questions.

- (ii) Each question carries 1 Mark.
- 1. Find the curved surface area of a cylinder of radius 14 cm and height 21 cm. $\left(\pi = \frac{22}{7}\right)$
- 2. It is given that $\triangle ABC \triangle DEF$. Is it true to say that $\frac{BC}{DE} = \frac{AB}{EF}$? Justify your answer.
- Find the probability of getting a prime number, when a card drawn at random from the numbered cards from 1 to 25.
- 4. Evaluate: $\frac{\sin 58^{\circ}}{\cos 32^{\circ}} + \frac{\tan 42^{\circ}}{\cot 48^{\circ}}$
- The length of the tangent from an external point 'P' to a circle with centre 'O' is always less than OP.' Is this statement true? Give reasons.
- Write the formula to find the mean of a grouped data, using assumed mean method and explain each term.

If a tower of height 'h' is observed from a point with a distance 'd' and angle 'b', then
express the relation among h, d and θ.

SECTION - II

 $6 \times 2 = 12$

Note : (i) Answer all the following questions.

(ii) Each question carries 2 Marks.

8. If $x = a \sec \theta$ and $y = b \tan \theta$, then prove that $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

9. There are 5 red balls, 4 green balls and 6 yellow balls in a box. If a ball is selected at random, what is the probability of not getting a yellow ball?

10. C.I | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | Prequency(f_i) | 5 | 8 | 10 | 5 | 2

Find the value of $\sum f_i x_i$ for the above data, where x_i is the mid value of each class.

 A toy is in the form of a cone mounted on a hemisphere. The radius of the base and the height of the cone are 7 cm and 8 cm respectively. Find the surface area of the toy.

$$\left(z=\frac{22}{7}\right)$$

- AB is a chord of the circle and AOC is its diameter, such that ∠ACB = 60°. If AT is the tangent to the circle at the point A, then find the measure of ∠BAT.
- 13. Draw a circle with 5 cm radius and construct a pair of tangents to the circle.

SECTION - III

 $4 \times 4 = 16$

Note: (i) Answer all the following questions.

- (ii) In this section, every question has internal choice.
- (iii) Answer anyone alternative.
- (iv) Each question carries 4 Marks.
- 14. a) Two dice are rolled at same time and the sum of the numbers appearing on them is noted. Find the probability of getting each sum from 3 to 5 separately.

OR

b) If
$$\frac{\sin \theta}{1 - \cos \theta} + \frac{\sin \theta}{1 + \cos \theta} = 4$$
 (0° < θ < 90°), then find the value of θ .

15. a) The scores of 20 students in a test is tabulated as follows:

Marks	10-20	20 - 30	30 - 40	40 - 50	50-60
Number of students	del (%)	6 -	7	4	2

Find the mode of the data.

- b) Two concentric circles of radii 10 cm and 6 cm are drawn. Find the length of the chord of the larger circle which touches the smaller circle.
- 16. a) A tree is broken without separating from the stem by the wind. The top touches the ground making an angle 30" at a distance of 12 m from the foot of the tree. Find the height of the tree before breaking.

- b) How many spherical balls each 7 cm in diameter can be made out of a solid lead cube whose edge measures 66 cm?
- 17. a) The literacy rate (in percentage) of 35 cities is given in the following table.

Literacy rate %	40 - 50	50 - 60	60-70	70 - 80	80 - 90
Number of cities	3	- 11	10	8	3

Prepare 'more than type' cumulative frequency table and draw ogive curve for this data.

OR

b) Construct a triangle of sides 5 cm, 6 cm and 7 cm. Then construct a triangle similar to it, whose sides are 1½ times the corresponding sides of the first triangle.

Time: 30 Mts.]

PART - B

Max. Marks : 5

Instructions:

- (i) Answer all the questions.
- (iii) Each question carries 1/2 mark.
- (iii) Answers are to be written in question paper only.
- Marks will not be awarded in any case of over writing, rewriting or erased answers.
- I. Write the CAPITAL LETTERS (A,B,C,D) showing the correct answer for the following questions in the brackets provided against them. 10 × 1/2 = 5

(A)
$$\frac{1}{\sqrt{\cos ec^2\theta - 1}}$$
 (B) $\frac{\csc \theta}{\sqrt{\csc^2\theta - 1}}$ (C) $\frac{2 \csc \theta}{\sqrt{\cos ec^2\theta - 1}}$ (D) $\frac{2}{\sqrt{\cos ec^2\theta - 1}}$

(C)
$$\frac{2 \csc \theta}{\sqrt{\csc^2 \theta - 1}}$$

(D)
$$\frac{2}{\sqrt{\cos ec^2\theta - 1}}$$

Observe the following:

(II) $\log_2 (\sin 90^\circ) = 1$

Which one is CORRECT?

(I) $\sin^2 20^\circ + \sin^2 70^\circ = 1$

(A) (I) only

(B) (II) only

(C) Both (I) and (II)

(D) Neither (T) nor (II)

3.	In AABC, AC = 12	cm, AB = 5 cm at	nd ∠BAC = 30°, the area	of AABC is
	(A) 30 cm ²	(B) 15 cm ²	(C) 60 cm ²	(D) 20 cm ²
4.	Which one of the	following can no	t be the probability of an	event? []
	(A) $\frac{2}{3}$	(B) $\frac{4}{5}$	(C) 0.7	(D) $\frac{5}{4}$
5.	The x - coordinat	e of the point of i	intersection of the two of	gives of grouped data is
			A Company of the Comp	
	(A) median of the		(B) mode of the d	
	(C) mean of the d			d values of the data
6.	Volumes of two s	pheres are in the	ratio of 8 : 27, the ratio	of their surface areas is
	/AN 9 : 9	(80.4+3	(C) 2:9	(D) 4:9
-	(A) 2:3	(B) 4:3	the cubical box of side 'a'	
7.	is	cuy inter manie	inc cubical box by area.	1:1
	(A) $\frac{1}{3}\pi a^3$	(B) $\frac{1}{6}\pi a^{1}$	(C) $\frac{4}{3}$ ma ³	(D) $\frac{8}{3}$ ma ³
			411 6	
8.	Express 'x' in ter-	ms of a, b and c i	n the following figure.	The state of 1
8.	Express 'x' in ter	ms of a, b and c i	n the following figure.	and the same of th
8.	Express 'x' in ter	ms of a, b and c i	n the following figure.	Man or or or or or or
8.	Express 'x' in ter	ms of a, b and c i	n the following figure.	AND THE RESERVE OF THE PARTY OF
8.	Express 'x' in ter	ms of a, b and c i	n the following figure.	
8.	Express 'x' in ter	ms of a, b and c i	× P	
8.	Express 'x' in ter	ms of a, b and c i	× P	ab.
8.	Express 'x' in term (A) $x = \frac{Bc}{b+c}$	ms of a, b and c is $M = \frac{bc}{b+c}$	× P	(D) $x = \frac{ab}{a+c}$
9.	(A) $x = \frac{ac}{b+c}$	M 46° (B) $x = \frac{bc}{b+c}$	× P	(D) $x = \frac{ab}{a+c}$ The length of shadow of
	(A) $x = \frac{ac}{b+c}$	M $\frac{46^{\circ}}{b}$ (B) $x = \frac{bc}{b+c}$ evation of sun increase.	y x y	(D) $x = \frac{ab}{a+c}$ The length of shadow of []
	(A) $x = \frac{BC}{b+C}$ If the angle of ele	M $\frac{46^{\circ}}{b}$ (B) $x = \frac{bc}{b+c}$ evation of sun increase.	V V V V V V V V V V	all the street of the latest o
	(A) $x = \frac{BC}{b+C}$ If the angle of eletthe tower	M $\frac{46^{\circ}}{b}$ (B) $x = \frac{bc}{b+c}$ evation of sun increase.	(C) $x = \frac{b+c}{bc}$ (B) increases (D) can't be decided.	ded 1
	(A) $x = \frac{BC}{b+C}$ If the angle of eletthe tower	M $\frac{46^{\circ}}{b}$ (B) $x = \frac{bc}{b+c}$ evation of sun increase.	V V V V V V V V V V	ded 1
9.	(A) $x = \frac{BC}{b+C}$ If the angle of elethe tower	M 46° (B) $x = \frac{bc}{b+c}$ evation of sun increase.	(C) $x = \frac{b+c}{ac}$ (B) increases (D) can't be decided to the end of the e	ded 1
9.	(A) $x = \frac{BC}{b+C}$ If the angle of elethe tower	M 46° (B) $x = \frac{bc}{b+c}$ evation of sun increase.	(C) $x = \frac{b+c}{bc}$ (B) increases (D) can't be decided.	ded 1

SOLUTIONS

PART - A

SECTION - I

 Find the curved surface area of a cylinder of radius 14 cm and height

$$21 \text{ cm.} \left(\pi = \frac{22}{7}\right)$$

Sol. Given that r = 14 cm, h = 21 cm,

$$\pi = \left(\frac{22}{7}\right)$$

Curved surface area of cylinder = 2xrh

$$= 2 \times \frac{22}{7} \times 14 \times 21$$

= 1848 sq.cm

- 2. It is given that $\triangle ABC \triangle DEF$. Is it true to say that $\frac{BC}{DE} = \frac{AB}{EF}$? Justify your
 - answer.

 Ratio of corresponding sides of similar triangles are equal)

But
$$\frac{BC}{DE} = \frac{AB}{EF}$$
 (given)

- .. Given statement is wrong.
- Find the probability of getting a prime number, when a card drawn at random from the numbered cards from 1 to 25.
- Sol. Favourable outcomes of prime numbers from 1 to 25 = 9

Total number of outcomes = 25

Probability of getting a prime number

Number of favourable outcomes

Total number of outcomes

$$=\frac{9}{25}$$

4. Evaluate:
$$\frac{\sin 58^{\circ}}{\cos 32^{\circ}} + \frac{\tan 42^{\circ}}{\cot 48^{\circ}}$$

Sol. 58°, 32° and 42°, 48° are complementary angles.

=1+1=2

$$= \frac{\sin 58^{\circ}}{\cos (90 - 58)^{\circ}} + \frac{\tan 42^{\circ}}{\cot (90 - 42)^{\circ}}$$
$$= \frac{\sin 58^{\circ}}{\sin 58^{\circ}} + \frac{\tan 42^{\circ}}{\tan 42^{\circ}}$$

 The length of the tangent from an external point P' to a circle with centre 'O' is always less than OP." Is this statement true? Give reasons.

Sol.

A OAP is right triangle.

OP is hypotenuse. AP is tangent to the circle at A.

(: Hypotenuse is longest side)

OP > length of the tangent

- .. Given statement is true.
- Write the formula to find the mean of a grouped data, using assumed mean method and explain each term.

Sol. Mean =
$$a + \frac{\sum f_i d_i}{\sum f_i}$$

a - assumed mean

f - frequency

7. If a tower of height 'h' is observed from a point with a distance 'd' and angle b, then express the relation among h, d and 0.

Sol. For writing relation between h. 0, d as

$$\tan \theta = \frac{h}{d}$$

$$\tan \theta = \frac{\text{opposite side of } \theta}{\text{adjacent side of } \theta} = \frac{h}{d}$$

SECTION - II

8. If $x = a \sec \theta$ and $y = b \tan \theta$, then prove that $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$,

Sol.
$$\frac{x}{a} = \sec \theta$$
, $\frac{y}{b} = \tan \theta$
 $\sec^2 \theta - \tan^2 \theta = 1$

$$\left(\frac{\mathbf{x}}{a}\right)^2 - \left(\frac{\mathbf{y}}{b}\right)^2 \stackrel{\cdot}{=} 1$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 - \epsilon$$

9. There are 5 red balls, 4 green balls and 6 yellow balls in a box. If a ball is selected at random, what is the probability of not getting a yellow ball?

Sol. Total number of balls in a bag = 15

Total number of chance to select a ball from a bag = 15

Favourable outcomes to select not vellow ball = 9

Probability of not getting a yellow ball

Number of favourable outcomes Total number of outcomes

$$=\frac{9}{15}=\frac{3}{5}$$

10.	C.I	10 - 20	20-30	30 - 40	40 - 50	50 - 60
7954	$Frequency(f_i)$	5	8	10	5	2

Find the value of $\sum f_i x_i$ for the above data, where x_i is the mid value of each class.

Frequency Class mark Sol. CI fix, 75 10 - 2025 20 - 30200 30 - 4010 35 350 40 - 5045 225 55 50 - 60

110

11. A toy is in the form of a cone mounted on a hemisphere. The radius of the base and the height of the cone are 7 cm and 8 cm respectively. Find the surface area of the toy. $\left(\pi = \frac{22}{7}\right)$

Sol. According to the data radius of hemisphere = radius of the base of cone = r

$$r = 7 \, \text{cm}$$

height of cone = h = 8 cm

slant height of cone = $l = \sqrt{r^2 + h^2}$

$$= \sqrt{7^2 + 8^2}$$
$$= \sqrt{49 + 64}$$
$$= \sqrt{113}$$

surface area of toy

- = curved surface area of cone
 - + surface area of hemisphere
- $=\pi rl + 2\pi r^2$

$$=\frac{22}{7}\times7\times\sqrt{113}+2\times\frac{22}{7}\times7^2$$

- = 22√113 + 308 sq.cm
- 12. AB is a chord of the circle and AOC is its diameter, such that ∠ACB = 60°. If AT is the tangent to the circle at the point A, then find the measure of ∠BAT.
- Sol. According to the data ZACB = 60°

AOC = diameter

AB = chord

AT is a tangent to the circle at A.

:. ∠ACB = 90° (': semi-circle angle)

$$\angle BAC + \angle ACB = 90^{\circ}$$

$$\angle BAC + 60^\circ = 90^\circ \Rightarrow \angle BAC = 30^\circ$$

$$\angle BAC + \angle BAT = 90^\circ$$

$$30^{\circ} + \angle BAT = 90^{\circ} \Rightarrow \angle BAT = 60^{\circ}$$

 Draw a circle with 5 cm radius and construct a pair of tangents to the circle.

Sol.

SECTION - III

- 14.a) Two dice are rolled at same time and the sum of the numbers appearing on them is noted. Find the probability of getting each sum from 3 to 5 separately.
- Sol. Total number of possible outcomes when rolling two dice = 6 × 6 = 36 Favourable outcomes of getting each sum from 3 to 6 separately:

Outcomes of

- i) getting sum 3: (1, 2) (2, 1)
- ii) getting sum 4: (1, 3) (2, 2) (3, 1)
- iii) getting sum 5: (1, 4) (2, 3) (3, 2) (4, 1)

 Total number of favourable outcomes

Probability of getting each sum from 3 to 5 separately

$$= \frac{\text{Number of favourable outcomes}}{\text{Total number of outcomes}}$$
$$= \frac{9}{36} = \frac{1}{4}$$

OR

b) If
$$\frac{\sin \theta}{1 - \cos \theta} + \frac{\sin \theta}{1 + \cos \theta} = 4 \ (0^{\circ} < \theta < 90^{\circ}),$$

then find the value of θ .

Sol.
$$\frac{\sin \theta}{1 - \cos \theta} + \frac{\sin \theta}{1 + \cos \theta} = 4 \ (0^{\circ} < \theta < 90^{\circ})$$

$$\frac{\sin\theta (1+\cos\theta)+\sin\theta (1-\cos\theta)}{(1-\cos\theta) (1+\cos\theta)}=4$$

$$\frac{\sin \theta + \sin \theta \cos \theta + \sin \theta - \sin \theta \cos \theta}{1 - \cos^2 \theta} = 4$$

$$\frac{2\sin\theta}{\sin^2\theta} = 4 \qquad (\because 1 - \cos^2\theta = \sin^2\theta)$$

$$\frac{2}{\sin \theta} = 4$$

$$\Rightarrow \sin \theta = \frac{1}{2} = \sin 30^{\circ}$$

$$\theta = 30^{\circ}$$

15. a) The scores of 20 students in a test is tabulated as follows :

Marks	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60
Number of students	1	6	7	4	2

Find the mode of the data.

Sol.

	Values	Number of Students	and mideral
	10-20	1	
	20-30	6	SELECTION OF THE PERSON OF THE
	30 - 40	7	- Modal Class
1	40-50	4	10000
	50-60	2 .	Contract of

$$I = 30, f_0 = 6, f_1 = 7, f_2 = 4, h = 10$$

$$Mode = I + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

$$= 30 + \left(\frac{7 - 6}{2(7) - 6 - 4}\right) \times 10$$

$$= 30 + \left(\frac{1}{14 - 10}\right) \times 10$$

$$= 30 + \left(\frac{1}{4}\right) \times 10$$

=30 + 2.5 = 32.5

OR

b) Two concentric circles of radii 10 cm and 6 cm are drawn. Find the length of the chord of the larger circle which touches the smaller circle.

Sol.

In A OAP.

Radius of outer circle = R = 10 cm Radius of inner circle = r = 6 cm Given that AB in a chord of outer circle and tangent to inner circle of P. Draw OP \perp AB Then PA = PB

$$\angle OPA = 90^{\circ}$$
 $OP^{2} + PA^{2} = OA^{2}$
 $6^{2} + PA^{2} = 10^{2}$
 $PA^{2} = 100 - 36 = 64$
 $PA = 8 \text{ cm}$
 $\therefore AB = PA + PB = 2PA = 2(8)$
 $= 16 \text{ cm}$

Length of the chord AB = 16 cm

16.a) A tree is broken without separating from the stem by the wind. The top touches the ground making an angle 30° at a distance of 12 m from the foot of the tree. Find the height of the tree before breaking.

Sol. Let height of the tree before broken

= (x + y) m

According to the data

Foot of the tree = A

Tree broken at B

Top of the tree touches after broken at C

Given AC = 12 m.

$$\tan 30^\circ = \frac{y}{12}$$

$$\frac{1}{\sqrt{3}} = \frac{y}{12}$$

$$y = \frac{12}{\sqrt{3}} = 4\sqrt{3}m$$

$$\cos 30^{\circ} = \frac{12}{x}$$

$$\frac{\sqrt{3}}{2} = \frac{12}{x}$$

$$x = \frac{12 \times 2}{\sqrt{3}} = 8\sqrt{3}m$$

Height of the tree before broken

$$= x + y$$

$$= 8\sqrt{3} + 4\sqrt{3} = 12\sqrt{3}m$$

OR

 b) How many spherical balls each 7 cm in diameter can be made out of a solid lead cube whose edge measures 66 cm?

Sol. Given side of cube =
$$a = 66 \text{ cm}$$

diameter of sphere = 7 cm
radius of sphere = $r = 3.5 \text{ cm}$
Volume of cube = $a^3 = (66)^3$
= $66 \times 66 \times 66$

Volume of sphere =
$$\frac{4}{3} \pi r^3$$

= $\frac{4}{3} \times \frac{22}{7} \times (3.5)^3$

Number of spheres made out from lead

$$cube = \frac{Volume of cube}{Volume of sphere}$$

$$= \frac{66 \times 66 \times 66}{\frac{4}{3} \times \frac{22}{7} \times 3.5 \times 3.5 \times 3.5}$$

= 1600.16

= 1600 spheres.

17.a) The literacy rate (in percentage) of 35 cities is given in the following table.

Literacy rate %	40 - 50	50 - 60	60 - 70	70 - 80	80 - 90
Number of cities	3	11	10.	8	3

Prepare 'more than type' cumulative frequency table and draw ogive curve for this data.

Sol.

Literacy rate %	Number of cities	Class upper boundaries	More than cumulative frequency
40 - 50	3	50	3
50-60	- 11	60	14
60 - 70	10	70	24
70 - 80	8	80	32
80 - 90	3	90	35

b) Construct a triangle of sides 5 cm, 6 cm and 7 cm. Then construct a triangle similar to it, whose sides are 1½ times the corresponding sides of the first triangle.

Sol.

PART - B

1. A 2. A 3. B 4. D 5. A 6. D 7. B 8. A 9. C

10. A or C

