

Time: 2.45 Hours]

Parts - A and B

[Max. Marks: 40

Real Numbers, Sets, Polynomials, Pair of Linear Equations in Two Variables, Quadratic Equations, Progressions, Coordinate Geometry

Instructions:

- In the time duration of 2 hours 45 minutes, 15 minutes of time is allotted to read and understand the Question paper.
- 2. Answer the Questions under Part A on a separate answer book.
- Write the answers to the questions under Part B on the question paper itself and attach it to the answer book of Part - A.

Time: 2 Hours]

PART - A

[Marks : 35

Note:

- i) Answer all the questions from the given three sections I, II and III of Part A.
- ii) In section III, every question has internal choice. Answer any one alternative.

SECTION - I

 $(Marks: 7 \times 1 = 7)$

Note: i) Answer all the following questions.

- ii) Each question carries 1 mark.
- 1. Find the distance between the points (1, 5) and (5, 8).
- Expand log₁₀ 385.
- 3. Give one example each for a finite set and an infinite set.
- 4. Find sum and product of roots of the Quadratic equation.

$$x^2 - 4\sqrt{3}x + 9 = 0$$

- 5. Is the sequence $\sqrt{3}$, $\sqrt{6}$, $\sqrt{9}$, $\sqrt{12}$,......... form an Arithmetic Progression? Give reason.
- 6. If x = a and y = b is solution for the pair of equations x y = 2 and x + y = 4, then find the values of a and b.
- 7. Verify the relation between zeroes and coefficients of the Quadratic polynomial

SECTION - II

 $(Marks: 6 \times 2 = 12)$

Note: i) Answer all the following questions.

- ii) Each question carries 2 marks.
- 8. Complete the following table for the polynomial $y = p(x) = x^3 2x + 3$.

X	-1	0	1	2
x^3				
-2x			AND THE PERSON NAMED IN	agen nou
3	2010 10 1	GEINE ST.	pasignore	va la aer
y				
(x, y)	N. S.	e sister o	off seath a	anise rego

- 9. Show that $\log \frac{162}{343} + 2\log \frac{7}{9} \log \frac{1}{7} = \log 2$.
- 10. If the equation $kx^2 2kx + 6 = 0$ has equal roots, then find the value of k.
- 11. Find the 7th term from the end of the Arithmetic Progression 7, 10, 13,, 184.
- 12. In the diagram on a Lunar eclipse, if the positions of Sun, Earth and Moon are shown by (-4, 6), (k, -2) and (5, -6) respectively, then find the value of k.
- 13. Given the linear equation 3x + 4y = 11, write linear equations in two variables such that their geometrical representations form parallel lines and intersecting lines.

SECTION - III

 $(Marks: 4 \times 4 = 16)$

Note: i) Answer all the following questions.

- ii) In this section, every question has internal choice.
- iii) Answer any one alternative.
- iv) Each question carries 4 marks.
- 14. Find the points of tri-section of the line segment joining the points (-2, 1) and (7, 4).

the polynomial p(x) = x - x + x - y = (x-1), the massimilar of

Sum of squares of two consecutive even numbers is 580. Find the numbers by writing a suitable Quadratic equation.

15. Prove that $\sqrt{3} + \sqrt{5}$ is an irrational number.

OR

Show that cube of any positive integer will be in the form of 8m or 8m + 1 or 8m + 3 or 8m + 5 or 8m + 7, where m is a whole number.

16. Find the solution of x + 2y = 10 and 2x + 4y = 8 graphically.

OR

 $A = \{x : x \text{ is a perfect square, } x < 50, x \in N\}$

 $B = \{x : x = 8m + 1, \text{ where } m \in W, x < 50, x \in N)\}\$

Find $A \cap B$ and display it with Venn diagram.

17. Find the sum of all two digit positive integers which are divisible by 3 but not by 2.

OR

Total number of pencils required are given by $4x^4 + 2x^3 - 2x^2 + 62x - 66$. If each box contains $x^2 + 2x - 3$ pencils, then find the number of boxes to be purchased.

10. In a division, if divisor is x + 1, quotient is x and remainder is 4, then dividend is

A) $x^2 + x$

B) 4(x + 1) + x C) x(x + 1) + 4 D) 4x + 4

SOLUTIONS /

PART - A

SECTION - I

- 1. Find the distance between the points (1, 5) and (5, 8).
- Sol. (1, 5) (5, 8)

Distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(5-1)^2 + (8-5)^2}$
= $\sqrt{(4)^2 + (3)^2}$
= $\sqrt{16+9} = \sqrt{25} = 5$ units.

- 2. Expand log₁₀ 385.
- **Sol.** $\log_{10} 385$

$$= \log_{10} (5 \times 7 \times 11)$$

= \log_{10} 5 + \log_{10} 7 + \log_{10} 11

- 3. Give one example each for a finite set and an infinite set.
- **Sol.** Finite set $A = \{1, 2, 3\}$ Infinite set $B = \{1, 2, 3, 4, \dots \}$
 - 4. Find sum and product of roots of the Quadratic equation.

$$x^2 - 4\sqrt{3}x + 9 = 0$$

Sol. Quadratic equation $x^2 - 4\sqrt{3}x + 9 = 0$

$$a = 1$$
; $b = -4\sqrt{3}$; $c = 9$

Sum of roots
$$= -\frac{b}{a}$$

 $= \frac{-(-4\sqrt{3})}{1} = 4\sqrt{3}$

Product of roots =
$$\frac{c}{a} = \frac{9}{1} = 9$$

- 5. Is the sequence $\sqrt{3}$, $\sqrt{6}$, $\sqrt{9}$, $\sqrt{12}$, form an Arithmetic Progression? Give reason.
- **Sol.** Given sequence $\sqrt{3}$, $\sqrt{6}$, $\sqrt{9}$, $\sqrt{12}$,

$$a_2 - a_1 = \sqrt{6} - \sqrt{3} = \sqrt{3} (\sqrt{2} - 1)$$

$$a_3 - a_2 = \sqrt{9} - \sqrt{6} = \sqrt{3} (\sqrt{3} - \sqrt{2})$$

$$a_2 - a_1 \neq a_3 - a_2$$

So it is not an Arithmetic progression.

6. If x = a and y = b is solution for the pair of equations x - y = 2 and x + y = 4, then find the values of a and b.

Sol.
$$x - y = 2$$

$$x + y = 4$$

a and b are solutions a - b = 2

$$3 + b = 4 \Rightarrow b = 1$$

 Verify the relation between zeroes and coefficients of the Quadratic polynomial x² – 4.

Sol.
$$p(x) = x^2 - 4$$

$$= (x + 2) (x - 2)$$

So zeroes are 2 and - 2

Sum of zeroes = 2 + (-2) = 0

Product of zeroes = 2(-2) = -4

$$p(x) = x^2 - 4$$

$$a = 1$$
, $b = 0$, $c = -4$

Sum of zeroes =
$$\frac{-b}{a} = \frac{-0}{1} = 0$$

Product of zeroes =
$$\frac{c}{a} = \frac{-4}{1} = -4$$

SECTION - II

8. Complete the following table for the polynomial $y = p(x) = x^3 - 2x + 3$.

x	-1	0	1	2
x ³	Photos .	Salisesi		F
- 2x	Pro Toka	MILE PARTY	THE PLAN	
3				
y		Sorbug	DE REFE	OF Res
(x, y)				

Sol.

x	-1	0	1 .	2
x ³	-1	0	1	8
- 2x	2	0	-2	-4
3	3	3	3	3
y	4	3	2	7
(x, y)	(-1, 4)	(0, 3)	(1, 2)	(2, 7)

9. Show that

$$\log\frac{162}{343} + 2\log\frac{7}{9} - \log\frac{1}{7} = \log 2.$$

Sol. LHS =
$$\log \frac{162}{343} + 2\log \frac{7}{9} - \log \frac{1}{7}$$

$$= \log\left(\frac{3^4 \times 2}{7^3}\right) + 2\log\left(\frac{7}{3^2}\right) - \log\left(\frac{1}{7}\right)$$

$$= \log 3^4 + \log 2 - \log 7^3$$

$$+ 2[\log 7 - \log 3^2] - [\log 1 - \log 7]$$

$$= 4\log 3 + \log 2 - 3\log 7 + 2\log 7$$
$$-4\log 3 - \log 1 + \log 7$$

$$= \log 2 \ (\because \log 1 = 0)$$

= RHS

Hence proved

- 10. If the equation $kx^2 2kx + 6 = 0$ has equal roots, then find the value of k.
- **Sol.** Given equation $kx^2 2kx + 6 = 0$ It has equal roots

So Discriminent (D)
$$b^2 - 4ac = 0$$

$$a = k$$
; $b = -2k$; $c = 6$

$$(-2k)^2 - 4(k)(6) = 0$$

$$Ak^2 = A \times 6k$$

$$k = 6$$

11. Find the 7th term from the end of the Arithmetic Progression

7, 10, 13,, 184.

Sol. Given Arithmetic progression 7, 10, 13,, 184. Writing it in the reverse

184, 181, 13, 10, 7

$$a = 184$$
; $d = 181 - 184 = -3$.

$$a_n = a + (n-1)d$$

$$7^{th}$$
 term so $n = 7$

$$a_7 = 184 + (7 - 1)(-3)$$

$$= 184 - 6(3) = 184 - 18 = 166$$

- 12. In the diagram on a Lunar eclipse, if the positions of Sun, Earth and Moon are shown by (-4, 6), (k, -2) and (5, -6) respectively, then find the value of k.
- **Sol.** Points (-4, 6) (k, -2) (5, -6)

 x_1 y_1 x_2 y_2 x_3 y_3 Since it is a lunar eclipse, the position

of sun, Earth and Moon must be collinear.

Since they are collinear, area of triangle must be zero.

$$\frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| = 0$$

$$\Rightarrow |-4(-2 + 6) + k(-6 - 6) + 5(6 + 2)| = 0$$

$$\Rightarrow |-16 - 12k + 40| = 0$$

$$\Rightarrow 12k = 24 \Rightarrow k = \frac{24}{12} = 2$$

 $\Rightarrow -12k + 24 = 0$

- 13. Given the linear equation 3x + 4y = 11, write linear equations in two variables such that their geometrical representations form parallel lines and intersecting lines.
- **Sol.** 3x + 4y 11 = 0 $a_1 = 3$, $b_1 = 4$, $c_1 = -11$ Condition for parallel lines

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

Eg: 6x + 8y - 25 = 0 $\left[\because \frac{3}{6} = \frac{4}{8} \neq \frac{-11}{-25}\right]$

$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

Eg:
$$4x + 3y + 7 = 0$$
 $\left[\because \frac{3}{4} \neq \frac{4}{3}\right]$

SECTION - III

- 14. Find the points of tri-section of the line segment joining the points (-2, 1) and (7, 4).
- **Sol.** Given points (-2, 1) (7, 4) $x_1 = -2$, $x_2 = 7$, $y_1 = 1$, $y_2 = 4$ Points of trisection means the points which divide it in the ratio 1:2 and 2:1 Section formula

$$= \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$$

Point which divides it in the ratio 1:2 is

$$= \left(\frac{1(7) + 2(-2)}{1+2}, \frac{1(4) + 2(1)}{1+2}\right)$$
$$= \left(\frac{7-4}{3}, \frac{4+2}{3}\right) = \left(\frac{3}{3}, \frac{6}{3}\right) = (1, 2)$$

Point which divides it in the ratio 2:1 is

$$= \left(\frac{2(7) + 1(-2)}{2 + 1}, \frac{2(4) + 1(1)}{2 + 1}\right)$$
$$= \left(\frac{14 - 2}{3}, \frac{8 + 1}{3}\right) = \left(\frac{12}{3}, \frac{9}{3}\right) = (4, 3)$$

 \therefore Points of trisection are (1, 2) and (4, 3).

OR

Sum of squares of two consecutive even numbers is 580. Find the numbers by writing a suitable Quadratic equation.

- Sol. Let the two consecutive even numbers be x and (x + 2) $(x)^2 + (x + 2)^2 = 580$ $x^2 + x^2 + 4x + 4 = 580$ $2x^2 + 4x - 576 = 0$ $x^2 + 2x - 288 = 0$. Quadratic equation. $x^2 + 18x - 16x - 288 = 0$ x(x + 18) - 16(x + 18) = 0(x + 18)(x - 16) = 0
 - x = -18 or x = +16

So the required numbers are –18, –16 (or) 16, 18

- 15. Prove that $\sqrt{3} + \sqrt{5}$ is an irrational number.
- **Sol.** Suppose $\sqrt{3} + \sqrt{5}$ is not an irrational number.

Then $\sqrt{3} + \sqrt{5}$ must be a rational number.

$$\sqrt{3} + \sqrt{5} = \frac{p}{q}$$
, $q \neq 0$ and $p, q \in Z$

Squaring on both sides

$$3 + 5 + 2\sqrt{15} = \frac{p^2}{q^2}$$
$$2\sqrt{15} = \frac{p^2}{q^2} - 8 = \frac{p^2 - 8q^2}{q^2}$$
$$\sqrt{15} = \frac{p^2 - 8q^2}{2q^2}$$

but $\sqrt{15}$ is an irrational number.

$$\frac{p^2 - 8q^2}{2q^2}$$
 is a rational number
$$(p^2 - 8q^2, 2q^2 \in \mathbb{Z}, 2q^2 \neq 0)$$

but an irrational number can't be equal to a rational number, so our supposition that $\sqrt{3} + \sqrt{5}$ is not an irrational number is false.

$$\therefore \sqrt{3} + \sqrt{5}$$
 is an irrational number.

OR

Show that cube of any positive integer will be in the form of 8m or 8m + 1 or 8m + 3 or 8m + 5 or 8m + 7, where m is a whole number.

Sol.
$$a = bq + r$$
, $0 \le r < b$
 $a = 8k + t$ for $t = 0$, 1, 2, 3, 4, 5, 6, 7.
 $a^3 = (8k + t)^3$
 $= (8k)^3 + 3(8k)(t)(8k + t) + (t)^3$
 $= 8[64k^3 + 3kt(8k + t)] + t^3$
 $= 8n + t^3$
If $t = 0$, 2, 4, 6 then $t^3 = 8p$
 $a^3 = (8k + t)^3 = 8n + 8p = 8(n + p) = 8m$
If $t = 1$ then $a^3 = 8n + 1 = 8m + 1$
If $t = 3$ then $a^3 = 8n + 27$
 $= 8(n + 3) + 3 = 8m + 3$
If $t = 5$ then $a^3 = 8n + 125$
 $= 8(n + 15) + 5 = 8m + 5$
If $t = 7$ then $a^3 = 8n + 343$

= 8(n + 42) + 7 = 8m + 7 $\therefore \text{ The cube of any positive integer will}$ be of the form 8m or 8m + 1 or 8m + 3or 8m + 5 or 8m + 7.

- 16. Find the solution of x + 2y = 10 and 2x + 4y = .8 graphically.
- **Sol.** $x + 2y = 10 \dots (1)$

X	0	2	4	6
y	5	4	3	2
(x,y)	(0, 5)	(2,4)	(4, 3)	(6, 2)

$$2x + 4y = 8 \dots (2)$$

X	0	2	4.	6
у	2	1	0	-1
(x, y)	(0, 2)	(2,1)	(4,0)	(6, -1)

The lines are parallel.

:. No solution for the given pair of equations.

OR

 $A = \{x : x \text{ is a perfect square, } x < 50,$ $x \in N)$

 $B = \{x : x = 8m + 1, where m \in W,$ $x < 50, x \in N)$

Find A ∩ B and display it with Venn diagram.

 $A \cap B = \{1, 9, 25, 49\}$

17. Find the sum of all two digit positive integers which are divisible by 3 but not by 2.

Sol. Two digit numbers which are divisible by 3 but not by 2 are 15, 21, 27,, 99 21 - 15 = 6 ; 27 - 21 = 6: These terms are in A.P. a = 15, d = 6, $a_n = 99$ $a_n = a + (n-1) d$ 99 = 15 + (n-1)6 $n - 1 = \frac{84}{6} = 14$ $S_n = \frac{n}{2}[a + l]$

$$S_n = \frac{11}{2}[a + l]$$

= $\frac{15}{2}[15 + 99] = \frac{15}{2} \times 114 = 855$
OR

Total number of pencils required are given by $4x^4 + 2x^3 - 2x^2 + 62x - 66$. If each box contains $x^2 + 2x - 3$ pencils, then find the number of boxes to be purchased.

Sol. Total number of pencils $=4x^4+2x^3-2x^2+62x-66$ Number of pencils in each box $= x^2 + 2x - 3.$

Number of boxes required = $(4x^4 + 2x^3)$ $-2x^2 + 62x - 66$ ÷ $(x^2 + 2x - 3)$

.. Number of boxes required $=4x^2-6x+22$

PART - B

7) C 1) B 2) D 3) D 4) A 5) C A 4 4 4