

Time: 2 hours 45 min.]

Parts - A and B

[Max. Marks: 40

Real Numbers, Sets, Polynomials, Pair of Linear Equations in Two Variables, Quadratic Equations, Progressions, Coordinate Geometry

Instructions:

- 1. In the time duration of 2 hours 45 minutes, 15 minutes of time is allotted to read and understand the Question paper.
- 2. Answer the Questions under 'Part A' on a separate answer book.
- 3. Write the answers to the Questions under 'Part B' on the Question paper itself and attach it to the answer book of 'Part A'.

Time: 2 Hours

PART - A

[Marks: 35

Note:

- 1. Answer all the questions from the given three sections I, II and III of Part A.
- 2. In section III, every question has internal choice. Answer anyone alternative.

SECTION - I

 $(Marks: 7 \times 1 = 7)$

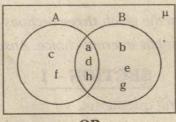
Note: (i) Answer all the following questions.

- (ii) Each question carries 1 mark.
- 1. Write the nature of roots of the quadratic equation $2x^2 5x + 6 = 0$.
- 2. Find the value of $\log_{\sqrt{2}}$ 256.
- 3. In a GP, $t_n = (-1)^n$. 2017. Find the common ratio.
- 4. Srikar says that the order of the polynomial $(x^2 5)(x^3 + 1)$ is 6. Do you agree with him? How?
- 5. A (0, 3), B (k, 0) and AB = 5. Find the positive value of k.
- 6. Show that the pair of linear equations 7x + y = 10 and x + 7y = 10 are consistent.
- 7. Represent $A \cap B$ through Venn diagram, where $A = \{1, 4, 6, 9, 10\}$ and $B = \{perfect squares less than 25\}.$

SECTION - II

 $(Marks: 6 \times 2 = 12)$

Note: (i) Answer all the following questions.


- (ii) Each question carries 2 marks.
- 8. Write any two three digit numbers. Find their L.C.M. and G.C.D. by prime factorization method.
- 9. Find the sum of first 10 terms of an A.P. 3, 15, 27, 39,
- 10. Which of $\sqrt{2}$ and 2 is a zero of the polynomial $p(x) = x^3 2x$? Why?
- 11. The sum of a number and its reciprocal is $\frac{10}{3}$. Find the number.
- 12. Two vertices of a triangle are (3, 2), (-2, 1) and its centroid is $\left(\frac{5}{3}, -\frac{1}{3}\right)$. Find the third vertex of the triangle.
- 13. Find the angle made by the line joining (5,3) and (-1,-3) with the positive direction of X axis.

SECTION - III

 $(Marks : 4 \times 4 = 16)$

Note: (i) Answer all the following questions.

- (ii) In this section, every question has internal choice.
- (iii) Answer anyone alternative.
- (iv) Each question carries 4 marks.
- 14. From the following Venn diagram, write the elements of the sets of A and B. And verify $n(A \cup B) + n(A \cap B) = n(A) + n(B)$.

OR

Use Euclid's division lemma to show that the square of any positive integer is of the form 5n or 5n + 1 or 5n + 4, where n is a whole number.

15. Find the sum of all three digit natural numbers, which are divisible by 3 and not divisible by 6.

OR

Divide $3x^4 - 5x^3 + 4x^2 + 3x - 5$ by $x^2 - 3$ and verify the division algorithm.

16. The perimeter of a right-angled triangle is 60 cm. and its hypotenuse is 25 cm. Then find the remaining two sides.

OR

The points C and D are on the line segment joining A (-4, 7) and B (5, 13) such that AC = CD = DB. Then find coordinates of points C and D.

17. Draw the graph for the polynomial $p(x) = x^2 - 5x + 6$ and find the zeroes from the graph.

OF

Draw the graph of 2x + y = 6 and 2x - y + 2 = 0 and find the solution from the graph.

Instructions :

- (i) Write the answers to the questions in this Part-B on the Question paper itself and attach it to the answer book of Part-A.
- (ii) Answer all the questions.
- (iii) Each question carries 1/2 mark.
- (iv) Answers are to be written in question paper only.
- (v) Marks will not be awarded in any case of over writing, rewriting or erased answers.
- I. Write the CAPITAL LETTERS (A,B,C,D) showing the correct answer for the following questions in the brackets provided against them. (Marks: $10 \times \frac{1}{2} = 5$)
- 1. If P_1 and P_2 are two odd prime numbers, such that $P_1 > P_2$, then $P_1^2 P_2^2$ is
 - (A) an even number.

(B) an odd number.

(C) a prime number.

(D) an odd prime number.

- 2. Sum of the distances from A (3, 4) to X-axis and from B (5, 7) to Y-axis is[
 - (A) 8

(B) 10

(C) 11

- (D) 9
- 3. $S = \left\{3, \pi, \sqrt{2}, -5, 3 + \sqrt{7}, \frac{2}{7}\right\}$. Which of the following is a sub-set of 'S' containing all irrational numbers?
 - (A) $\left\{3, \pi, \frac{2}{7}, -5, 3+\sqrt{7}\right\}$

(B) $\{3 + \sqrt{7}, \sqrt{2}, \pi\}$

(C) $\{3, \pi, \sqrt{2}\}$

- (D) $\left\{3, -5, \frac{2}{7}\right\}$
- 4. Which of the following is inconsistent equation to 2x + 3y 5 = 0?
 - (A) 4x 6y 11 = 0

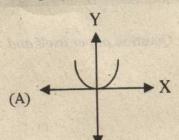
(B) 2x + y = 5

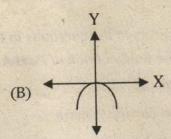
(C) x + 3y = 5

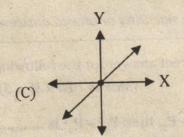
- (D) 4x + 6y 11 = 0
- 5. Sum of zeroes of a polynomial $x^3 2x^2 + 3x 4$ is
- [

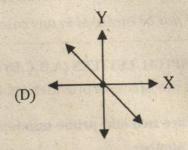
1

- (A) 2
- (B) 2


(C) 1


- (D) 4
- 6. (x, y), (2, 0), (3, 2) and (1, 2) are vertices of a parallelogram, then (x, y) =[
 - (A)(0,0)
- (B) (4, 8)


(C)(1,0)


- (D)(5,0)
- 7. If $x^2 px + q = 0$ (p, $q \in R$ and $p \neq 0$, $q \neq 0$) has distinct real roots, then
 - (A) $p^2 < 4q$
- (B) $p^2 > 4q$
- (C) $p^2 = 4q$
- (D) $p^2 + 4q = 0$

3. The graph represented by y = x is

9. The distance between two points A (a $\cos \theta$, 0), B (0, a $\sin \theta$) is

(A) a

0.

(B) a²

(C) √a

(D) 0

 $\begin{array}{c|cccc}
A & B & \mu \\
\hline
5 & 7 & 8 &
\end{array}$

From the Venn diagram, $A \cup B = \dots$

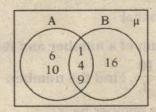
- (A) {5, 6}
- (B) {5, 6, 7, 8}
- (C) Ø

(D) {7, 8}

SOLUTIONS /

PART - A

SECTION - I


- 1. Write the nature of roots of the quadratic equation $2x^2 - 5x + 6 = 0$.
- **Sol.** Discriminent (D) = $b^2 4ac$ $=(-5)^2-4(2)(6)$ = 25 - 48= -23

D < 0, So roots are not Real.

- 2. Find the value of $\log_{\sqrt{2}}$ 256.
- **Sol.** 256 = 2^8 , $\sqrt{2}$ = $2^{\frac{1}{2}}$ $\log_{\sqrt{2}} 256 = \log_{\frac{1}{2^2}} 2^8$ $= \frac{8}{1}\log_2 2$ $\left(\because \log_{b^n} a^m = \frac{m}{n} \log_b a\right)$
 - $= 8 \times 2 \times 1 \ (\because \log_2 2 = 1) = 16$
 - 3. In a GP, $t_n = (-1)^n$. 2017. Find the common ratio.
- **Sol.** $t_n = (-1)^n 2017$ $t_1 = (-1)^1 2017 = -2017$ $t_2 = (-1)^2 2017 = 2017$ $r = \frac{t_2}{t_1} = \frac{2017}{-2017} = -1$
 - 4. Srikar says that the order of the polynomial $(x^2 - 5)(x^3 + 1)$ is 6. Do you agree with him? How?
- **Sol.** $(x^2-5)(x^3+1)=x^5+x^2-5x^3-5$ As its degree is 5, I do not agree with Srikar.

- 5. A (0, 3), B (k, 0) and AB = 5. Find the positive value of k.
- **Sol.** Distance = $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$ $5 = \sqrt{(k-0)^2 + (0-3)^2}$ $25 = k^2 + 9$ $k^2 = 16$ $k = \pm 4$.. Positive value of k is 4.
 - 6. Show that the pair of linear equations 7x + y = 10 and x + 7y = 10 are consis-
- **Sol.** If $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$, then the equations are consistent Since $\frac{7}{1} \neq \frac{1}{7}$, the given equations are consistent
 - 7. Represent A ∩ B through Venn diagram, where $A = \{1, 4, 6, 9, 10\}$ and $B = \{ perfect squares less than 25 \}.$
- **Sol.** $A = \{1, 4, 6, 9, 10\}$

$$B = \{1, 4, 9, 16\}$$

SECTION - II

- 8. Write any two three digit numbers. Find their L.C.M. and G.C.D. by prime factorization method.
- **Sol.** Let the two three digit numbers be 100 and 200

$$100 = 2^2 \times 5^2$$

 $200 = 2^3 \times 5^2$
L.C.M. = $2^3 \times 5^2 = 200$
G.C.D = $2^2 \times 5^2 = 100$

Find the sum of first 10 terms of an A.P.

3, 15, 27, 39,

Sol.
$$a = 3$$

 $d = 15 - 3 = 12$
 $n = 10$

$$S_n = \frac{n}{2}[2a + (n-1)d]$$

$$S_{10} = \frac{10}{2}[2(3) + (10 - 1)12]$$

$$= 5[6 + 108]$$

$$= 5 \times 114$$

$$= 570$$

Which of $\sqrt{2}$ and 2 is a zero of the polynomial $p(x) = x^3 - 2x$? Why?

$$p(\sqrt{2}) = (\sqrt{2})^3 - 2(\sqrt{2})$$

$$= 2\sqrt{2} - 2\sqrt{2} = 0$$

$$p(2) = (2)^3 - 2(2)$$

$$= 8 - 4 = 4$$

Sol. $p(x) = x^3 - 2x$

Since $p(\sqrt{2}) = 0$, $\sqrt{2}$ is a zero of the polynomial

11. The sum of a number and its reciprocal is $\frac{10}{3}$. Find the number.

Sol. Let the number be 'x'

Its reciprocal is $\frac{1}{x}$

 $x + \frac{1}{x} = \frac{10}{3}$, the quadratic equation obtained from this is $3x^2 - 10x + 3 = 0$

After solving, we get x = 3 or $\frac{1}{3}$

 \therefore Required number is 3 or $\frac{1}{3}$.

12. Two vertices of a triangle are (3, 2), (-2, 1) and its centroid is $\left(\frac{5}{3}, -\frac{1}{3}\right)$. Find the third vertex of the triangle.

Sol. Let the third vertex be (x, y) Centroid (G)

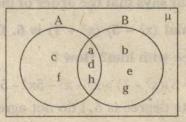
$$= \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$

$$\left(\frac{5}{3}, -\frac{1}{3}\right) = \left(\frac{3 + (-2) + x}{3}, \frac{2 + 1 + y}{3}\right)$$

$$\frac{5}{3} = \frac{1 + x}{3}$$

$$x = 4$$

$$3 + y = -\frac{1}{3}$$


$$y = -4$$
So third vertex is $(4, -4)$

13. Find the angle made by the line joining (5, 3) and (-1, -3) with the positive direction of X – axis.

Sol. Slope =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 3}{-1 - 5} = \frac{-6}{-6} = 1$$

 $\tan \theta = 1 = \tan 45^\circ$
Required angle $(\theta) = 45^\circ$

SECTION - III

14. From the following Venn diagram, write the elements of the sets of A and B. And verify $n(A \cup B) + n(A \cap B) = n(A) + n(B)$.

Sol. $A = \{a, c, d, f, h\}$

B = {a, b, d, e, g, h}
A
$$\cup$$
 B = {a, b, c, d, e, f, g, h}
A \cap B = {a, d, h}
n(A) = 5, n(B) = 6, n(A \cup B) = 8,
n(A \cap B) = 3
L.H.S = n(A \cup B) + n(A \cap B) = 8 + 3 = 11
R.H.S = n(A) + n(B) = 5 + 6 = 11
 \therefore n(A \cup B) + n(A \cap B) = n(A) + n(B)

OR

Use Euclid's division lemma to show that the square of any positive integer is of the form 5n or 5n + 1 or 5n + 4, where n is a whole number.

Sol.
$$a = bq + r, 0 \le r < b$$

 $b = 5$ so $r = 0, 1, 2, 3, 4$
Then 'a' can be of the forms
 $5q + 0, 5q + 1, 5q + 2, 5q + 3, 5q + 4$
Case (i) When $a = 5q$
 $a^2 = (5q)^2 = 5(5q^2) = 5n$ where
 $n = 5q^2 \in W$
Case (ii) When $a = 5q + 1$
 $a^2 = (5q + 1)^2$
 $= 25q^2 + 10q + 1$
 $= 5(5q^2 + 2q) + 1$
 $= 5n + 1$ where $n = 5q^2 + 2q \in W$
Similarly

Case (iii)
$$a^2 = (5q + 2)^2 = 5n + 4$$

Case (iv) $a^2 = (5q + 3)^2 = 5n + 4$

Case (iv)
$$a^2 = (5q + 3)^2 = 5n + 4$$

Case (v) $a^2 = (5q + 4)^2 = 5n + 1$

So the square of any positive integer is of the form 5n or 5n + 1 or 5n + 4 where $n \in W$

15. Find the sum of all three digit natural numbers, which are divisible by 3 and not divisible by 6.

Sol. Three digit numbers which are divisible by 3 and not divisible by 6 are

$$d = 111 - 105 = 6$$

$$l = 999$$

$$a_n = a + (n-1)d$$

$$999 = 105 + (n-1)6$$

$$n - 1 = \frac{999 - 105}{6} = 149$$

$$\therefore n = 150$$

$$S_n = \frac{n}{2}(a+l)$$

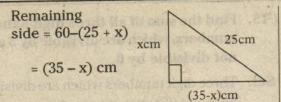
$$S_{150} = \frac{150}{2} [105 + 999]$$

$$= 75 \times 1104 = 82,800$$

OR

Divide $3x^4 - 5x^3 + 4x^2 + 3x - 5$ by $x^2 - 3$ and verify the division algorithm.

Sol.
$$x^2 - 3$$
) $3x^4 - 5x^3 + 4x^2 + 3x - 5(3x^2 - 5x + 13)$
 $3x^4 - 9x^2$
(-) (+)
 $-5x^3 + 13x^2 + 3x$
 $-5x^3 + 15x$
(+) (-)
 $13x^2 - 12x - 5$
 $13x^2 - 39$


Verification:

(Divisor × Quotient) + remainder = Dividend.

$$(x^2 - 3)(3x^2 - 5x + 13) + (-12x + 34)$$

= $3x^4 - 5x^3 + 4x^2 + 3x - 5$.

16. The perimeter of a right-angled triangle is 60 cm. and its hypotenuse is 25 cm. Then find the remaining two sides.

Sol. Let one side be 'x' cm

Using Pythagoras theorem,

$$x^2 + (35 - x)^2 = (25)^2$$

After simplifications, we get

$$x^2 - 35x + 300 = 0$$

After solving, we get x = 15 or 20

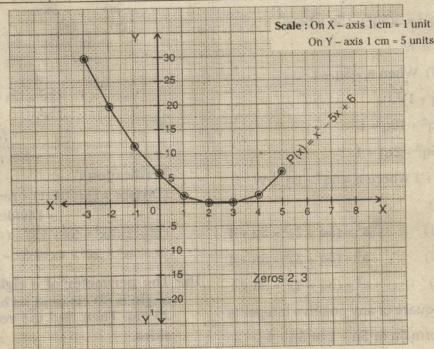
.. The remaining two sides of the triangle measures 15 cm and 20 cm.

OR

The points C and D are on the line segment joining A (-4, 7) and B (5, 13) such that AC = CD = DB. Then find coordinates of points C and D.

Section Formula

$$= \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$$


$$C = \left(\frac{1(5) + 2(-4)}{1 + 2}, \frac{1(13) + 2(7)}{1 + 2}\right) = (-1, 9)$$

$$D = \left(\frac{2(5) + 1(-4)}{2 + 1}, \frac{2(13) + 1(7)}{2 + 1}\right) = (2, 11)$$

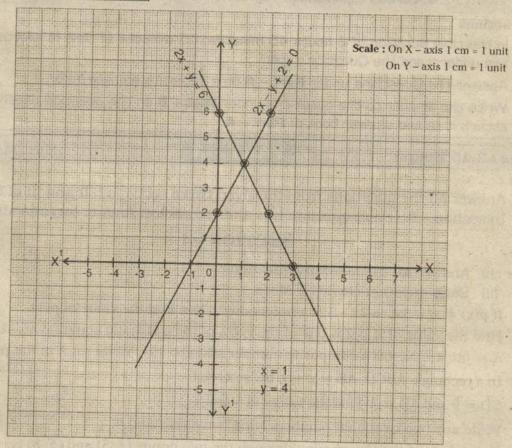
17. Draw the graph for the polynomial $p(x) = x^2 - 5x + 6$ and find the zeroes from the graph.

Sol.
$$p(x) = x^2 - 5x + 6$$

*								ARREST THE	
X	-3	-2	-1	0	1	2	3	4	5
x ²	9	4	1	0	1	4	9	16	25
-5x	15	10	5	0	-5	-10	-15	-20	-25
6	6	6	6	6	6	6	6	6	6
y	30	20	12	6	2	0	0	2	6
(x,y)	(-3,30)	(-2,20)	.(-1,12)	(0,6)	(1,2)	(2,0)	(3,0)	(4,2)	(5,6)

Zeroes of polynomial are 2 and 3.

OR


Draw the graph of 2x + y = 6 and 2x - y + 2 = 0 and find the solution from the graph.

Sol. $2x + y = 6 \rightarrow (1)$

X	0	1	2	3
у .	6	4	2	0
(x,y)	(0,6)	(1,4)	(2,2)	(3,0)

$$2x - y + 2 = 0 \rightarrow (2)$$

X	0	1	2
у	2	4	6
(x,y)	(0,2)	(1,4)	(2,6)

Intersecting point of equations (1) and (2) is (1, 4)So x = 1; y = 4

PART - B

1) A 2) D· 3) B 4) D 5) B 6) A 7) B 8) C 9) A 10) B