

Time: 2.45 Hours]

Parts - A and B

[Max. Marks: 40

Real Numbers, Sets, Polynomials, Pair of Linear Equations in Two Variables, Quadratic Equations, Progressions, Coordinate Geometry

Instructions:

- 1. In the time duration of 2 hours 45 minutes, 15 minutes of time is allotted to read and understand the Question paper.
- 2. Answer all the Questions under Part A on a separate answer book.
- 3. Write the answers to the questions under Part B on the Question paper itself and attach it to the answer book of Part A.

Time: 2 Hours]

PART - A

[Marks : 35

Note:

- (i) Answer all the questions from the given three sections I, II and III of Part A.
- (ii) In section III, every question has internal choice. Answer any one alternative.

SECTION - I

 $(Marks: 7 \times 1 = 7)$

Note: (i) Answer all the following questions.

- (ii) Each question carries 1 mark.
- 1. Ramu says, "If $\log_{10} x = 0$, value of x = 0". Do you agree with him? Give reason.
- 2. Determine 'x' so that 2 is the slope of the line passing through A (-2, 4) and B(x, -2).
- 3. -3, 0 and 2 are the zeroes of the polynomial $p(x) = x^3 + (a-1)x^2 + bx + c$, find a and c.
- 4. Find the discriminant of the quadratic equation $3x^2 5x + 2 = 0$ and hence write the nature of its roots.
- 5. Find the 11th term of the A.P.: 15, 12, 9,
- 6. If $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, then find A B and B A.
- 7. Write any two linear polynomials having one term and three terms.

SECTION - II

 $(Marks: 6 \times 2 = 12)$

Note: (i) Answer all the following questions.

- (ii) Each question carries 2 marks.
- 8. If $A = \{x : x \text{ is a factor of } 12\}$ and $B = \{x : x \text{ is a factor of } 6\}$.

then find $A \cup B$ and $A \cap B$.

- 9. Find the roots of quadratic equation $x^2 + 4x + 3 = 0$ by "Completing Square method".
- 10. For what value of 'm' in the following, mx + 4y = 10 and 9x + 12y = 30 system of equations will have no solution? Why?
- 11. Which term of the G.P.: $\sqrt{2}$, 2, 2, $\sqrt{2}$, 4, is 32?
- 12. If $x^2 + y^2 = 10xy$, prove that $2 \log (x + y) = \log x + \log y + 2 \log 2 + \log 3$.
- 13. Shashanka said that $(x + 1)^2 = 2(x 3)$ is a quadratic equation. Do you agree?

SECTION - HI

 $(Marks : 4 \times 4 = 16)$

Note: i) Answer all the following questions.

- ii) In this section, every question has internal choice.
- iii) Answer any one alternative.
- iv) Each question carries 4 marks.
- 14. Use division algorithm to show that the square of any positive integer is of the form $5m \circ 5m + 1$ or 5m + 4, where 'm' is a whole number.

OR

Show that $\sqrt{5} - \sqrt{3}$ is an irrational number.

15. Draw the graph for the polynomial $p(x) = x^2 + 3x - 4$ and hence find the zeroes from the graph.

OR

Draw the graph of x + y = 11 and x - y = 5. Find the solution of the pair of linear equations.

16. A train travels 360 km at a uniform speed. If the speed had been 5 km/h more, it would have taken 1 hour less for the same journey. Find the speed of the train.

OR

Find the sum of all the integers between 1 to 50 which are not divisible by 3.

17. Find the area of a rhombus ABCD, whose vertices taken in order, are A (-1, 1), B(1, -2), C(3, 1) and D(1, 4).

OR

If $A = \{x : x \text{ is a prime less than 20} \}$ and $B = \{x : x \text{ is a whole number less than 10} \}$, then verify $n(A \cup B) = n(A) + n(B) - n(A \cap B)$.

Note:

- (i) Write the CAPITAL LETTERS (A, B, C, D) showing the correct answer for the following questions in the brackets provided against them.
- Answer all the questions.
- Each question carries 1/2 mark.
- Answers are to be written in question paper only.
- Marks will **not** be awarded in any case of overwriting, rewriting or erased answers.
- 1. If a, b, c are in A.P., then b =1
 - A) $\frac{a+c}{2}$
- B) a + c C) \sqrt{ac} D) ac
- 2. If the number of subsets of a given set is 32, then the number of elements in the set will be
 - A) 2

- B) 4
- C) 5

- 3. The distance of (3, 4) from origin is
 - A) 3

B) 4

C) 5

D) 7

4. The sum of the roots of $6x^2 = 1$ is

A) 0

- B) $\frac{1}{6}$ C) $-\frac{1}{6}$
- D) 6
- 5. If the polynomial $p(x) = x^4 2x^3 + x^2 1$ is divided by (x + 1), then the degree of quotient polynomial. 1
 - A) 1

B) 3

C) 4

- D) 2
- 6. The sum of a number and reciprocal is $\frac{17}{4}$, then the number is

A) 3

B) 4

C) 5

D) 17

- 7. If $\log_{10} 2 = 0.3010$, then $\log_{10} 32$ is
 - A) 5.3010
- B) 2.3010
- C) 1.5050
- D) 0.3010
- 8. The point (-2, -2) is in the quadrant.

A) Q,

- B) Q,
- C) Q,

- D) Q
- 9. The sum of the first 20 even natural numbers is

- A) 5050
- B) 55

- C) 505
- D) 420
- 10. The roots of a quadratic equation $ax^2 bx + c = 0$, $a \ne 0$ are

1

- A) $\frac{-b + \sqrt{b^2 4ac}}{2a}$; $\frac{-b + \sqrt{b^2 + 4ac}}{2a}$
- B) $\frac{-b + \sqrt{b^2 4ac}}{2a}$; $\frac{-b \sqrt{b^2 + 4ac}}{2a}$

SOLUTIONS

PART - A

SECTION-I

- 1. Ramu says, "If $\log_{10} x = 0$, value of x = 0". Do you agree with him? Give reason.
- Sol. $\log_{10} x = 0$ [: $\log_a N = x$ $10^0 = x$ $\Rightarrow a^x = N$] $x = 1 & x \neq 0$.: I don't agree with Ramu.
 - 2. Determine 'x' so that 2 is the slope of the line passing through A (-2, 4) and
- Sol. Given slope of the line passing through A(-2, 4) and B (x, -2) is 2. Here $x_1 = -2$; $y_1 = 4$; $x_2 = x$; $y_2 = -2$ Slope of $\overline{AB} = \frac{y_2 - y_1}{x_2 - x_1} = 2$.

$$\frac{-2-4}{x-(-2)} = 2 \Rightarrow \frac{-6}{x+2} = 2$$
$$\Rightarrow -6 = 2(x+2)$$
$$\Rightarrow -6 = 2x+4$$

$$2x = -10 \Rightarrow x = \frac{-10}{2} = -5$$

$$\therefore x = -5$$

- 3. -3, 0 and 2 are the zeroes of the polynomial $p(x) = x^3 + (a-1)x^2 + bx + c$, find a and c.
- Sol. Given solution compare with $ax^3 + bx^2 + cx + d$ Given equation $p(x) = x^3 + (a-1)x^2 + bx + c$.

Sum of the roots
$$\Rightarrow \alpha + \beta + \gamma = \frac{-b}{a}$$

$$-3 + 0 + 2 = \frac{-(a-1)}{1}$$

$$-1 = -a + 1 \Rightarrow -1 - 1 = -a$$

$$\therefore a = 2$$

Product of the roots
$$\alpha\beta\gamma = \frac{-d}{a}$$

$$(-3) (0) (2) = \frac{-c}{1} \Rightarrow c = 0$$

 $\therefore a = 2 \text{ and } c = 0$

- 4. Find the discriminant of the quadratic equation $3x^2 5x + 2 = 0$ and hence write the nature of its roots.
- **Sol.** Given quadratic equation $3x^2 5x + 2 = 0$

Given quadratic equation compare with $ax^2 + bx + c = 0$

Here a = 3; b = -5; c = 2Therefore, the discriminant

$$b^{2} - 4ac = (-5)^{2} - 4(3) (2)$$

$$= 25 - 24 = 1 > 0$$
The equation has dist

:. The quadratic equation has distinct and real roots.

- 5. Find the 11th term of the A.P.: 15, 12, 9,
- Sol. Here

$$a_1 = 15$$
; $a_2 = 12$
 $d = a_2 - a_1 = 12 - 15 = -3$
 $a_n = a + (n - 1) d$
 $a_{11} = 15 + (11 - 1) (-3) = 15 - 30$
 $a_{11} = -15$

- 6. If $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, then find A B and B A.
- Sol. $A B = \{1, 2, 3\} \{3, 4, 5\} = \{1, 2\}$ $B - A = \{3, 4, 5\} - \{1, 2, 3\} = \{4, 5\}$
 - Write any two linear polynomials having one term and three terms.
- **Sol.** Linear polynomial one term = 2x. Linear polynomial three terms

SECTION - II

= x + y + z

- 8. If $A = \{x : x \text{ is a factor of 12} \}$ and $B = \{x : x \text{ is a factor of 6} \}$, then find $A \cup B$ and $A \cap B$.
- Sol. Given $A = \{x : x \text{ is a factor of } 12\}$ = $\{1, 2, 3, 4, 6, 12\}$ B = $\{x : x \text{ is a factor of } 6\}$

 $= \{1, 2, 3, 6\}$

$$A \cup B = \{1, 2, 3, 4, 6, 12\} \cup \{1, 2, 3, 6\}$$
$$= \{1, 2, 3, 4, 6, 12\}$$
$$A \cap B = \{1, 2, 3, 4, 6, 12\} \cap \{1, 2, 3, 6\}$$
$$= \{1, 2, 3, 6\}$$

- 9. Find the roots of quadratic equation $x^2 + 4x + 3 = 0$ by "Completing Square method".
- Sol. Given quadratic equation is $x^{2} + 4x + 3 = 0$ $x^{2} + 4x = -3$ $x^{2} + 2 \cdot x \cdot 2 = -3$

Now LHS is of the form $a^2 + 2ab$, where b = 2.

Adding $b^2 = 2^2$ on both sides, we get $x^2 + 2(x)(2) + (2)^2 = -3 + (2)^2$ $(x + 2)^2 = -3 + 4$ $(x + 2)^2 = 1$ $x + 2 = \pm 1$ x + 2 = 1; x + 2 = -1

x = 1 - 2 = -1; x = -1 - 2 = -3: -1, -3 are the roots of the given Q.E.

- 10. For what value of 'm' in the following, mx + 4y = 10 and 9x + 12y = 30 system of equations will have no solution? Why?
- **Sol.** Given equations have no solutions.

They have no solution mean they are parallel.

Given equations compare with

$$a_1x + b_1y + c_1 = 0$$
 and

 $a_2x + b_2y + c_2 = 0$ are parallel

If $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ here given

$$a_1 = m$$
, $b_1 = 4$, $c_1 = -10$
 $a_2 = 9$, $b_2 = 12$, $c_2 = -30$

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \Longrightarrow \frac{m}{9} = \frac{4}{12} \Longrightarrow m = 3$$

:. If m = 3 then the above system will have no solution.

11. Which term of the G.P.: $\sqrt{2}$, 2, $2\sqrt{2}$, 4, is 32?

Sol. Given G.P.: $\sqrt{2}$, 2, $2\sqrt{2}$, 4, is 32. $a = \sqrt{2} ; r = \frac{a_2}{a_1} = \frac{2}{\sqrt{2}} = \sqrt{2}$ Now $a_n = a \cdot r^{n-1} = 32$ $(\sqrt{2})(\sqrt{2})^{n-1} = 32$ $(\sqrt{2})^n = 32 \Rightarrow (\sqrt{2})^n = 2^5$ $\therefore n = 10$ So 10^{th} term of

G.P.: $\sqrt{2}$, 2, $2\sqrt{2}$, 4, is 32.

12. If $x^2 + y^2 = 10xy$, prove that $2 \log (x + y) = \log x + \log y + 2 \log 2 + \log 3$.

Sol. Given equation $x^2 + y^2 = 10xy$ Adding 2xy on both sides $x^2 + y^2 + 2xy = 10xy + 2xy$ $(x + y)^2 = 12xy$ Applying log on both sides $\log (x + y)^2 = \log (12xy)$ $2\log (x + y) = \log 12 + \log x + \log y$ $\therefore 2 \log (x + y) = \log 4 + \log 3$ $+ \log x + \log y$

Hence proved.

13. Shashanka said that $(x + 1)^2 = 2(x - 3)$ is a quadratic equation. Do you agree?

Sol. $(x + 1)^2 = 2(x - 3)$ $x^2 + 1 + 2x = 2x - 6$ $x^2 + 1 + 2x - 2x + 6 = 0$ $x^2 + 7 = 0 \Rightarrow x^2 \cdot 0.x + 7 = 0$ Yes, this is a quadratic equation.

SECTION - III

- 14. Use division algorithm to show that the square of any positive integer is of the form 5m or 5m + 1 or 5m + 4, where 'm' is a whole number.
- **Sol.** $a = bq + r, 0 \le r < b$ b = 5 so r = 0, 1, 2, 3, 4

Then 'a' can be of the forms

5q + 0, 5q + 1, 5q + 2, 5q + 3, 5q + 4

Case(i) When a = 5q

$$a^2 = (5q)^2 = 5 (5q^2) = 5m$$

where $m = 5q^2 \in W$.

Case (ii) When a = 5q + 1

$$a^2 = (5q + 1)^2$$

$$= 25q^2 + 10q + 1$$

$$= 5 (5q^2 + 2q) + 1$$

= 5m + 1 where $m = 5q^2 + 2q \in W$ Similarly,

Case (iii)
$$a^2 = (5q + 2)^2 = 5m + 4$$

Case (iv)
$$a^2 = (5q + 3)^2 = 5m + 4$$

Case (v) $a^2 = (5q + 4)^2 = 5m + 1$

So the square of any positive integer is of the form 5m or 5m + 1 or 5m + 4 where $n \in W$.

OR

Show that $\sqrt{5} - \sqrt{3}$ is an irrational number.

Sol. Suppose $\sqrt{5} - \sqrt{3}$ is not an irrational number. $\sqrt{5} - \sqrt{3}$ is a rational number.

Let
$$\sqrt{5} - \sqrt{3} = \frac{p}{q}$$
 where $q \neq 0$ and

p, q ∈ Z squaring on both sides

$$5 + 3 - 2\sqrt{15} = \frac{p^2}{q^2}$$

$$\sqrt{15} = \frac{8q^2 - p^2}{2q^2}$$

$$\therefore$$
 p, q \in Z & q \neq 0

$$8q^2 - p^2 \& 2q^2 \in Z \text{ and also } 2q^2 \neq 0.$$

So
$$\frac{8q^2 - p^2}{2q^2}$$
 is a rational number.

but $\sqrt{15}$ is an irrational number.

An irrational number never be equal to a rational number.

So our supposition that $\sqrt{5} - \sqrt{3}$ is not an irrational number is false.

$$\therefore \sqrt{5} - \sqrt{3}$$
 is an irrational number.

15. Draw the graph for the polynomial $p(x) = x^2 + 3x - 4$ and hence find the zeroes from the graph.

Sol.
$$p(x) = x^2 + 3x - 4$$

x	-4	-3	-2	-1	0	1	2
x ²	16	9	4	1	0	1	'4
3x	-12	-9	-6	-3	0	3	6
-4	-4	-4	-4	-4	-4	-4	-4
y	0	-4	-6	-6	-4	0	6
(x, y)	(-4, 0)	(-3, -4)	(-2, -6)	(-1, -6)	(0, -4)	-(1, 0)	(2, 6)

Check Method:

$$p(x) = x^{2} + 3x - 4$$

$$= x^{2} + 4x - x - 4$$

$$= x(x + 4) - 1(x + 4)$$

$$p(x) = (x + 4)(x - 1)$$

$$p(x) = 0 \Rightarrow x = -4 & x = 1$$

:. Zeroes of polynomial are -4 and 1.

OR

Draw the graph of x + y = 11 and x - y = 5. Find the solution of the pair of linear equations.

Sol. Given
$$x + y = 11$$
 and $x - y = 5$
 $a_1x + b_1y + c_1 = 0$; $a_2x + b_2y + c_2 = 0$
 $\frac{a_1}{a_1} = \frac{1}{a_1}$; $\frac{b_1}{a_2} = \frac{1}{a_1}$ $\frac{a_1}{a_2} \neq \frac{b_1}{a_2}$

Hence the linear equations are consistent.

x + y = 11						
x	y	(x, y)				
0	11	(0, 11)				
11	0	(11, 0)				

x-y=5						
X	у	(x, y)				
0	-5	(0, -5)				
5	0	(5, 0)				

.. The lines intersecting at a point (8, 3)

Check Method: Intersect at a point (8, 3)

$$x + y = 11$$

 $8 + 3 = 11$
 $11 = 11$
 $x - y = 5$
 $8 - 3 = 5$
 $5 = 5$

- 16. A train travels 360 km at a uniform speed. If the speed had been 5 km/h more, it would have taken 1 hour less for the same journey. Find the speed of the train.
- **Sol.** The distance travelled = 360 km

 Let the speed of the train = x kmph

 Time taken to complete a journey

$$=\frac{\operatorname{dis} \operatorname{tan} \operatorname{ce}}{\operatorname{speed}}$$

By problem
$$\frac{360}{x} - \frac{360}{x+5} = 1$$

 $360 \left(\frac{1}{x} - \frac{1}{x+5} \right) = 1$
 $360 \left(\frac{x+5-x}{x(x+5)} \right) = 1$
 $5 - 1$

$$\frac{5}{x^2 + 5x} = \frac{1}{360}$$

$$x^2 + 5x = 1800$$

$$x^2 + 5x - 1800 = 0$$

$$x^2 + 45x - 40x - 1800 = 0$$

$$x(x + 45) - 40(x + 45) = 0$$

$$(x + 45)(x - 40) = 0$$

$$x + 45 = 0$$
 (or) $x - 40 = 0$

$$x = -45 \text{ or } x = +40$$

But x can't be negative.

.. The speed of the train = 40 kmph

OR

Find the sum of all the integers between 1 to 50 which are not divisible by 3.

Sol. [1, 4, 7, 10, 49] + [2, 5, 8, 50]

Case (i): [1, 4, 7, 10, 49]

Here
$$a = 1$$
, $d = 3$

$$a_n = a + (n-1) d$$

$$49 = 1 + (n-1) 3 \Rightarrow 49 = 3n - 2$$

$$49 + 2 = 51 = 3n$$

$$n = \frac{51}{3} = 17$$

$$S_{n(1)} = \frac{n}{2} [2a + (n-1) d]$$

$$= \frac{17}{2} [2(1) + (17-1) 3]$$

$$= \frac{17}{2} [2 + 48]$$

$$= \frac{17}{2} \times 50 = 425$$

Case (ii): [2, 5, 8,50]

$$a = 2, d = 3$$

$$a_n = a + (n-1) d$$

$$50 = 2 + (n-1) 3 = 3n - 1 \Rightarrow \frac{51}{3} = n$$

$$\therefore$$
 n = 17

$$S_{n(2)} = \frac{17}{2} [2(2) + (17 - 1) 3]$$

= $\frac{17}{2} [4 + 48] = \frac{17}{2} [52] = 442$

Adding case (i) & case (ii)

$$S_n = 425 + 442 = 867.$$

- 17. Find the area of a rhombus ABCD, whose vertices taken in order, are A (-1, 1), B(1, -2), C(3, 1) and D(1, 4).
- Sol. Area of a rhombus

$$=\frac{1}{2}$$
 × (Product of its diagonals)

Let the vertices be $=\frac{1}{2} \times AC \times BD$

A (-1, 1), B (1, -2), C (3, 1), D (1, 4) Distance formula

$$= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

AB =
$$\sqrt{(1+1)^2 + (-2-1)^2}$$

= $\sqrt{4+9} = \sqrt{13}$

BC =
$$\sqrt{(3-1)^2 + (1+2)^2}$$

$$= \sqrt{4+9} = \sqrt{13}$$

CD =
$$\sqrt{(1-3)^2 + (4-1)^2}$$

= $\sqrt{4+9}$ = $\sqrt{13}$

AD =
$$\sqrt{(1+1)^2 + (4-1)^2}$$

= $\sqrt{4+9} = \sqrt{13}$
AC = $\sqrt{(3+1)^2 + (1-1)^2}$
= $\sqrt{4^2 + 0^2} = 4$
BD = $\sqrt{(1-1)^2 + (4+2)^2}$
= $\sqrt{0+6^2} = 6$
In \triangle ABCD, AB = BC = CD = AD [from sides are equal]
Hence \triangle ABCD is a rhombus.

∴ Area of Rhombus =
$$\frac{1}{2} \times d_1 \times d_2$$

= $\frac{1}{2} \times 4 \times 6$
= 12 sq. units.

If $A = \{x : x \text{ is a prime less than 20}\}$ and $B = \{x : x \text{ is a whole number less}$ than 10}, then verify $n(A \cup B) = n(A) + n(B)$ $-n(A \cap B)$

Sol. Given $A = \{x : x \text{ is a prime less than 20}\}$ $A = \{2, 3, 5, 7, 11, 13, 17, 19\}$ n(A) = 8 $B = \{x : x \text{ is a whole number less than 10}\}$ $= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ n(B) = 10 $n(A \cup B) = n(A) + n(B) - n(A \cap B) - (1)$ $A \cap B = \{2, 3, 5, 7, 11, 13, 17, 19\} \cap$

A \cap B = {2, 3, 5, 7, 11, 13, 17, 19} \cap {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} = {2, 3, 5, 7} n(A \cap B) = 4

From (1) n (A \cup B) = 8 + 10 - 4 = 14.

PART - B

1) A 2) C 3) C 4) A 5) B 6) B 7) C 8) C 9) D 10) C

6 6 6